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The fields of a turbulent Lorentz gas with average

magnetic field are expressed in terms of fluctuating quantities.

The equations of conservation of momentum and matter are used

along with Maxwell's equations to obtain a Fourier analyzed

momentum equation in terms of the fluctuating velocities alone.

Non-linear terms are llnearized through the use of a dynamic

viscosity-like term after Me--berg. The st_udy is then

restricted to a semi-cc_0ressible plasma. It is found that

in _eneral six modes of wave motion are possible; three are

modified classical modes and the others are mixed or "turbu.

lent modes" which express the cross correlation between the

classical modes present in the turbulence. Numerical results

are obtained for the indices of refraction and the mobilities

for the various modes. One of the most important results of

the analysis is the appearance of an enhanced diffusion above

a certain critical value of the magnetic field.
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CHAPTER 1

INTRODUCTION

i.i Turbulence and Plasma D_nsmlcs

Collective fluctuating phenomena in ionized gases have

been _own to exist in several situations. It has often been

argued, for instance, that ionized matter in interstellar

space is in a state of turbulence due to the large Reynolds

number associated with the flow fields. 1 In a totally dif-

ferent situation, investigators have reported on the random

appearance of the magnetic and velocity fields accompanying

a collapsing pinch. 2 It is also known to workers in gas

discharges that the density of the plasma and the electro-

magnetic field radiated from the positive column of the

discharge exhibits a predominately statistical character

implying that the plasma is essentially in a state of turbu-

lence. 3

There have been some az%nm_nts that the fluctuations

encountered in the phenomena described above do not actually

correspond to a turbulent state of the plasma as understood

in a classical sense but are due rather to the presence of

4
mlcroinstabilltles. This fine distinction is felt to be

artificial and the point of view adopted here is that the

character of the fluctuating field is akin to that of the

usually recognized turbulent field.

!
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In order to clarify the nature of these fluctuations some

of the characteristic features of a turbulent field will be

summarized. Turbulent motion is characterized by the fact

that if the velocity, for example, is measured under seemingly

identical conditions, the values obtained are found to be a

random function of position and time. For the sake of simpli-

city restriction is made to homogeneous turbulence for which

the probabilities associated with random quantities are inde-

pendent of spatial translation. 5

It turns out that the velocity and other field quantities

are ccntinuous functions of space and time so that they may

be Fourier analyzed. This Fourier analysis is a resolution

into components of different linear size since the wave_

length is a parameter specifying the different Fourier com-

ponents. Turbulent motion ma_ therefore be thought of as

consisting of the superposition of a large number of different

sized components which make additive contributions to the

field quantity. These compcnents interact with each other in

a way demanded by the non-linear terms in the equation of

motion. If this equation were linear, the excitation of one

of the components would not involve the others; however, it

is precisely these non-linear terms which produce the tur-

bulence by requiring coupling between modes.

From probability theory it can be shown that turbulent

!
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motion is completely specified by the complete set of aver-

aged products of the field vectors. When the turbulence is

homogeneous this average may be a spatial one. Two types of

averaged products which are germane to this work are the

first order and second order product mean values.

For example, if the field quantity chosen is the velocity

Z.

'S
is the first order product mean value. Here V is the volume

over which the average is taken and r is the position vector.

The second order product mean value is

(I-2)

and is better known as the "velocity correlation". The vector

r-r' is the separation in space between the locations at which
m

the partial products are measured. An (1-2) the partial

products are, of course, functions of position and time so

that the velocity correlation is in general a function of time.

Throughout this investigation turbulence will be studied

as resulting from the dynamics of a plasm fluid so that

moments of the Boltmnann-Vlasov equation are involved. This is

I
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in contradistinction to a totally different technique in which

solutlcns of the Boltzmann-Vlasov equation exhibiting a randan

character are considered.

1.2 Critical Surve2 of HFdrcmagnetlc Turbulence_

In early work on hydremagnetic turbulence, the line of

approach often consisted in reasoning similar to that of

classical hydrodynamic turbulence (Batchelor 6 and LeeT).

Batchelor, for instance, employed an analogy between the

magnetic field and the vortlcity field of hydrodynamics ob-

taining ccndltlons under which growth of the average magnetic

field would take place assuming the presence of small spon-

taneous fields. More recently this problem of the growth of

a magentic field in a turbulent conducting fluid has been

8
considered by Pao.

Since 1952 there have been two main lines of attack

used in the stu_v of olasma turbulence. In the first, one

starts with the equations for the conservation of mcmenttnn

and matter, assumes homogeneity and isotropy of the field,

and derives spectral energy densities for the field in terms

of correlation functions. This method will be referred to

as bhe "deductive approach". In the other line of reasoning,

certain heuristic assumptions are made to account for the

trnnsfer of turbulent energy between different Fourier

!
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components of the flow field. This second line of attack will

be referred to as the "heuristic approach". The more salient

aspects of this recent work are sun_narized below_

i.2. i Deductive Approach

One of the first serious attempts to develop a deductive

theory of turbulence in a plasma is that of S. Chandrasekhar. 9

Chandrasekhar's theory is based on earlier work concerned

with classical turbulence in a incon_oressible fluid, l0 This

theory of plasma turbulence includes the following assu_otions:

(1) The conducting fluid is inco_oresslble,

(2) In the spirit of the usual approximations of MHD,

charge neutrality prevails and the dlsplacmnent

current is neglected,

(3) The turbulent field is homogeneous,

(4) A stationary state prevails so that energy supplied

to maintain turbulence is dissipated thermally,

(5) The assumption of isotropy is made which requires

that the time average of any function of the field

quantities defined with respect to a particular set

of axes is invariant under arbitrary rotations and

reflections of the axes of reference,

(6) Correlations are introduced between ui and hi, the

fluctuating velocity and magnetic field, at two

I
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different points and at two different times. By

introductn_ the time !nterva_ into the definition

of the correlations, Cnandras_:kna._ is able to acco_

for the phase correlation et'fects in turbuier_t

motion. _he important assun_tlon he makes here is

that these correlations depend only on the difference

in times t'-t" as far as the time deoendence is

concerned,

(7) It is assumed that all correlatims which include an

odd number of components of hj will vanish identi-

cally, and finally

(8) The fourth order products introduced are assumed to

be directly related to the second moments as in a

normal distribution.

Of the many correlations introduced in Chandrasekhar's

theory, of special interest in the present context are

(]-3)

and

i
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The importance of the quantities QiJ and Hij is due to

the fact that their Fourier transform describe how the energy

associated with each velocity or magnetic field component is

distributed over the various wave-numbers and frequencies

in a harmonic resolution of the turbulent fielcLq.5 These quan-

tities are also important in that they provide a measure of the

scale of the turbulent fields.

Under the assumptions enumerated above it can be shown

that

end

(1-5)

'" ' (l-6)
Ht,_) : _x H ('5÷)6 (j._ (_'C __ )m ,

where Q(r,t) and H(r,t) are defining scalars of the tensors in

question. The qusntity g_'_is a unit alternating tensor

having the values E40&--O when k, J and k are not all different;

_,_-+I or -1 when k, J and k are all different and in cyclic

or acyclic order respectively.

In terms of Q and H the equation of motion for the fluid

becomes

I



I

|

I

I _-_ _ _'
__- _,_ _ )(?

I
where,-'* Is the kinematic viscosity and

I

(1-7)

(I-8)

I

I
I

Another equation relating Q and H is developed from the

equation involving the magnetic field. In conjunction with

(i-7) there results a system connecting q and H. The conse-

quences of this system are pursued further for the case of

zero viscosity and infinite conductivity with Kolmogoroff's

I

I

I

law for the defining scalars being confirmed.

Of major interest here is (1-7) which represents the

equation of motion. Chandrasekhar extended the Heisenberg

approach to hydromagnetic turbulence in view of the symmetry

of Q and H in this equation.

I

I

1.2.2 Heuristic Approach

i.2.2. i Work of Chandrasekhar.
LJ JL,I _ __..

In a subsequent paper on

hydromagnetic turbulence Chandrasekhar points out that the

I

I

I
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equation

- _ _ o_q (1-9)

in the framework of ordinary hydrodynamics is, in the framework

of hydromagnetics, replaced by (I-7). Now the equation for the

time rate of change of the spectrum of kinetic energy in ordin-

at.:hydrodynamics is

(i-io)

where F(k) is the spectral function giving the energy density

in k-space involved in Fourier cc_wcnents (or eddies) of wave-

number k. Q(v,k'; v,k) is the transition probability such that

the first integral gives the energy contributed by larger

eddies and the second integral gives the energy lost to smaller

eddies. Since Q and H appear symmetrically in (1-7) and in

view of (1-9) and (i-i0) Chandrasekhar extended (i-i0)

tc by--tics by the relation

I
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(I-Ii)

where Q(h,k' ; vik)

between the velocity and magnetic turbulent fields.

Letting G(k) be the spectrum of the turbulent magnetic

field, Chandrasekhar writes the followir_

9.. _'t--

- [% _ >,_,,,/..2j g-(k) _',

where the integrals are representative of eddy energy transfer

as above. The last term represents losses due to Joule dis-

slpatlcn of the magnetic energy associated with the kth mode

and _* stands for the resistivity. Equation (I-i0) is recog-

nized as the extenslcn to hydromagnetlcs of the equatlcn giving

and Q(v, k; h,k") are transition orobabilities

(l-Z2)

I
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the time rate of change of the magn?tic energy density in

ordinary hydrcdynamlcs of the equation giving the time rate

of change of the magnetic energy density in ordinary hydro-

dynamics which does not involve the transition integrals.

The assus_tlcn is made that the veloclty-veloclty tran-

slti_ probability is given by the Helsenberg form

(1-12a)

where

(1-13)

Due to the fact that Q and H appear sy_m_trically in

(1-7) the transition probability involving hj and vi is written

in the form

(I-14)

where

1 (&) --K _ ) (1-15)
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with the assu_0tion that K is the same numerical constant

as in (1-13). By integrating over k and using both (i-I0) and

(i-ii) the generalization to hydromagnetics of the well-known

equation of Heisenberg is obtained and is

+ (a_,z_)_ (_')]_ '_.

Another result of CTmndrasekhar which he arrives at by

assuming stationary turbulence, infinite conductivity and

zero viscosity is that two turbulent "modes" are possible

with different values of the ratio of magnetic to kinetic en-

ergy for the same wave number.

It might be mentioned here that a few other studies exist

concerning the energy spectrum in magneto-fluid turbulence

such as those of Deissler 12 and Tatsuml. 13 Tatsumi feels that

Chandrasekhar's treatment of the magnetic-velocity transition

probability is questionable since the magnetic field has no

means of adjustment within its own spectrum as does the velocity

field due to the linearity of Maxwell's equations. Kraichnan 14

has also criticized Chandrasekhar's assur_tion (8) connecting

the fourth-order and second-order moments showing that there

results no transfer of energy between eddies and the creation

of energy by each mode.

I



I

I

I
I

I

I

I
I

I

I
I
I

I

I

I
I

I

I

-13-

It should be pointed out that one of the most restric-

tive assumptions made in all of the above mentioned treat-

fronts is that of the Inco_ressibili_ oi the conauctin_ fluid.

In effect this procedure removes all possible fluctuation of

the char_ density which is unrealistic in most cs_ses. In

the presence of an average magnetic field the assun_,_on of

isotropy which is usually made is also to be cuestioncd.

1.2.2.2 Work of Yoshlkawa. Taking con_ressibilitv and

anisotropy effects into account Yoshikawa and Rose deveLooed

a theory of plasma turbulence in an att_npt to explain the

anomalous diffusion of the magnetic field. 15'16 Classical

theory based on the linearized Boltmmmnn-Vlsmov equation pre-

dicts a 1/B2 dependence of the dif_slon on the magnetic field,

B. On the other hand, it has been observed that as a result

o_ _h_ collective random oscillation_ in a plasma the diffusion

shows a 1/B dependence. 17 The term "anomalous" diffusion is

frequently used in the literature for the latter effect.

The asstm_tions made by Yoshikawa and Rose in their treat-

ment are as follows:

(1) The plasma is macroscopically homogeneous and sub-

Ject to homogeneous turbulence,

(2) A small pressure gradient is introduced,

(3) A uniform average electric field is introduced,

(4) The ions are assumed in_nobile,

I



I

I
-14-

I

I

I

I

I

I

(5) The effect of the fluctuasion of the magnetic field

is neglected which essentially means that the ki-

netic pressure is much sma[]er than the magnetic

pressure,

(6) Ten_erature is assumed Indcu_ndent of Dosition,

(7) The inert.':-.term of the momentum equation is neg-

lected which is Justified by assuming the drift ve-

locity is much smaller than the average thermal ve-

locity,

(8) Cross terms in the equation for the kth harmonic are

I

I

I

(9)

(i0)

neglected,

The plasma is considered to be in a steady state so

that partials with respect to time vanish, and

Isotropy is introduced in order to obtain results

from the complex system of equations obtained.

I Under these assumDtions the momentum equation for the field

quantities becomes

I

| - _

(1-17)

I

I

I

where e is the charge of the electron, n the number density,

the fluctuating electric field, _' the effective average field

which includes a contribution frcm the density gradient, L

the drift current which is the product of the number density and

I

I
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I

the velocity, m the mass of the electron and _c the Cou-

lomb collision frequency.

Equation (1-17) is the Fourier analyzed by means of ex-

i pandlng all fluctuating quantities in Fourier series; i.e.,

/ ¢_w-

II -_ - _ _E__ - -_ (_-_8_

I

I
(1-19)

I and

I

I
I

(1-20 )

where the subscript k refers to the kth haNncnic, the zero sub-

script indicates average values and the prime signifies that the

value k = 0 is excluded from the sum. Due to the independence

of the various Fourier harmonics ther results for the zeroth

I

I

harmonic

_ +_. (/o,<__):

(1-21)

I

I

I
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and for the kth harmonic

l

= _ voF_-_ _ ._ (1-22)

1

I
I

I

In accordance with assumpticn (8) the cross terms in (I-22)

are to be neglected. Now in conjunction with (1-21) and the

Maxwell equations

X -E --0 (1-23)

i and

I _' £_.. --"_) (1-24)

I it is possible to write _ and __&in terms of n_E', and _C.

i Writing £s as a vector with cc_oonents

I
and after some manipulations which include the assure,tion of

I isotropy, Yoshikawa obtains for the x-component of the drift cur-

rent

I

i

I
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(1-26)

!
!

ii

where S is the mean square deviation of the density fluctuation

to be obtained experimentally. Nctice that for large magnetic

fields % is proportional to 1/B in accordance with anomalous

diffusion. It is to be emphasized that (1-26) represents an

average drift current as is clear frcm the fact that it is essen-

! tlally obtained fram the zero-order or average-value equation

(i-21).

!

!
1.3 Purpose of the Present Stud_

The aim of this investigation is to derive the govemlng

B

g

!

relation for transport processes in a turbulent plasma. The

argument begins with the conservation equations for manentum

and mass which is the traditional approach except that account

is taken of compressibility and of magnetic field fluctuations.

In deriving the master equations terms up to second order are

! retained. Unlike the work of Yoshikawa and Rose, this treat-

ment is general enough to include the case of no average drift

!

!

in the plasma for which the second order teens involving cross

coupling of the fluctuating momentum, electric, and magnetic

fields becomes important. The advantage of this added con_oli-

!
cation is that the results can be applied to the case of the hot

!

!
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plasma whereas the oredlctions of the Yoshlkawa and Rose

study are not applicable at hlg_h temperatures in general.

This study is concerned with a turbulent Lorentz gas which

may be thought of as a gas of electrons in a neutralizing field

of positive ions which are assumed in_nobile. Most of the as-

sumptions made by Denisse and Delcroix 18 in treating the linear

equations of motion will be made and are discussed in the next

chapter. The difference here, of course, is that the non-

linear terms of the momentum equation are retained and the motion

of the ions is neglected. Neglect of ionic motion is Justified

for turbulent waves of frequency much higher than the ion-

cyclotron frequency.

The assumptions upon which the theory is based are as

follows:

(1) The effect of the non-linear terms in the momentum

equation on each Fourier component is dependent on a

dynamic viscosity which is independent of the fre-

quency or wave number of the component. The wskv that

the dynamic viscosity enters into the equations for

turbulent motion is slightly more general than its use

by Heisenberg since it appears in an anisotropic way.

In chapter two Tchen's approach to turbulent energy

transfer is sunwmrized, two of his intermediate equa-

tions being used to introduce the dynamic viscosity
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into the momentum equaticas. The essence of the

heuristic assumption made is that the wave numbers in-

volved in producing gradients are distinct in functlal

from the wave numbers involved in the turbulent vis-

cosity.

(2) Energy transfer between eddies is assumed to take place

locally; i.e., it involves wave numbers of approxi-

mately the same value. For a discussion of this point

in the hydrodynamic case reference may be made to a

paper by Tanenbaun. 19

(3) Third and higher terms in the turbulent quantities

are neglected.

?he s_proach taken in this study is rather general in the

sense that it may be extended to include the two fluid case or

situations of even greater ccc_lexity. Since provision is made

for anisotrc_y it is possible to be relatively confident of the

results in the presence of an average magnetic field. In these

two respects it is felt that the theory is an improvement over

that of Yc_hikawa since his method seems to rely on the simple

form of the kth order equation and in addition Isotropy is as-

sumed rather early in the development. The _roximatlcrm made

in the present work are introduce in a straightforward manner so

that perhaps the development is a little clearer than in Yoshl-

kawa's case. The two terms dropped by Yoshlkawa are retained;



I
I
I
i
I
i
I
I
I
i

I

I
" i

i

I

I

I

-20-

i.e., the inertia term and the term due to fluctuations of the

magnetic fields.

In comparing the present approach with that of Chandrase-

khar it is to be noted that compressibility is taken into ac-

count which greatly extends the generality of the theory.

During the development of the theory both the electric and mag-

netic fields are given explicitly as functions of the fluctua-

ting velocities alone. This result should aid in future analysis

of energy spectra and makes the Chandrasekhar method of repla-

cing non-linear terms in the magnetic field by an effective re-

sistivity suspect in view of the way the velocity correlations

enter into these terms.

One limiting feature of the a_proach used here is that it

is applicable only to Fourier con_ponents of frequency higher

than the cyclotron frequency of the ions not only because of

the neglect of ionic motion, but also due to the fact that as-

sumption (1) above does not hold for low frequencies; As a con-

sequence the equivalent of the kth order equation of Yoshikawa

is employed rather than the zeroth order equation he used to

study D.C. diffusion.

1.4 Procedure to be Followed in the Present Stud_

In chapter two the analysis of a turbulent Lorentz gas is

begun by writing the momentum equation including all non-linear

!
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contributions. The field quantities are expressed as an

average plus a fluctuating part, the fluctuating part being

expressible in terms of Fourier integrals. Proceeding in this

way it is possible to write the momentum equation in terms of

fluctuating quantities carrying out a similar procedure for

Maxwell's equations. In the second section of chapter two it is

indicated how Heisenberg came to replace the inertial non-

linear term in the hydrodynamic energy equation by a ccntribu-

tlon involving a dynamic viscosity. It is outlined how Tchen

went further in studying the Heisenberg and Obukhov theories

of turbulence and developed relations between the velocity

convolution integrals and the dynamic viscosity. To close

the second chapter it is shown how the results of Tchen which

are concerned with hydrodynamics are to be applied in the

hydremagnetlc situation studied here.

Since Tchen's integrals provide a means of linearizing

the velocity convolutions, in the first section of chapter three

all fluctuating quantities are expressed in terms of the velo-

cities. An iteratlve procedure is employed in which it is as-

sumed that the first order fluctuations in the density are much

larger than those of second order. As an initial use of the

integrals developed by Tchen, a relation is obtained giving a

measure of the validity of the iterative procedure. At the end

of the first section, a sunmmmy of the Fourier components of the

I
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fluctuating field quantities in terms of the velocities is

glven.

The task undertaken in the second section of chapter three

is to develop a llnearlzed form of the complete momentum equa-

tion. Tnls is done by expressing the non-linear terms of the

momentt_n equation in terms of the fluctuating velocities.

These non-linear tersm are then linearized by the use of Tchen's

integrals. The general momentum equation obtained for the

Fourier auautltles is valid for a con_presslble plasma with

turbulence subject to the validity of the iteration performed

in the previous section of chapter three. Since the general

moment_n equation is rather complex, a simplification is made

to include only a seml-con_ressible Lorentz gas; that is to say,

all quantities of second order in the fluctuating densities are

dropped. In this way the Fourier momentum equation for a semi-

coH_resslble Lorentz gas is obtained.

In chapter four the mobility tensor and dispersion re-

lations are obtained frun the expressions dealing with the semi-

compressible plasma. Since the general results a_e rather com-

plex, detailed study is limited to two degenerate types of pro-

pagatlon; along the average magnetic field and perpendicular

to the average magnetic field. Modes corresponding to modified

non-turbulent waves, as well as mixed modes; i.e., modes due

strictly to the appearance of the _vnamlc viscosity tenss are

I
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analyzed under certain simplifying conditions. Equations

yielding indices of refraction, mobilities, and related quan-

tities under the assumed conditions are developed. The chapter

ends with a summary of some of the salient aspects of the de-

generate modes studied.

In chapter five the results of chapter four are put into

a more convenient form for numerical calculation by the defi-

nition of certain non-dimensional quantities. For the pur-

purposes of ccm_arison, appendix C m_v be consulted which gives

relations for the indices of refraction and for mobilities

of the non-turbulent case. In the final section of the chapter

the results of the numerical computation are displayed in gra-

phical form.



I

I
i

I

I
il

!
I
il

II

I
ii

I

I
I

I

I

I

-24-

CHAPTER iI

PLASMA EQUATIONS FOR FLUCTUATING QUANTITIES

2.1 Introduction

It was stated in the previous chapter that the present

studywould be restricted to the case of the Lorentz gas.

This restriction is not a severe one since there exists a host

of exa_01es of great practical importance to plasma physics

where the Lorentz gas model is quite adequate in describing the

physics of the situation. The onset of turbulent diffusion in

a confined hot plasma or in the current sheet in a coaxial

gun 20 can be accounted for almost co_oletely by the electron

gas behavior. Another instance in which electrm_m dominate

the dynamics of the phenomenon refers to th_ so-called micro-

instabilities in a plasma when the characteristic length of the

phenomenon under investigation is much smaller than the ion-

Larmor radlus.

In the approach used here, being a macrosconic one, it is

implied throughout that the Larmor radius of the electron and

the Debye length are much smaller than the characteristic length

L associated with the plasma field. It is also assumed that the

electron ten_erature does not vary appreciably over the length

L.

!
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I

2.2 Ccnse rvatlan Relatlans and Fluctuatln_ Quantities

The starting point of the argument will be the conservation

relatlcrm for the momentum and charged particles in the plasma.

I
All field parameters are to be expressed in terms of an average

value plus a fluctuating term.

I The momentum equation for the electrons which is obtained

from the first manent of the Boltmmann-Vlasov equation is21

I +-_- (2-1)

I

I

I

I

I

In the above equation the usual summation convention is used

for repeated indices; also _ stands for the electron density,

m the mass and e the c_ of the electron, v the macroscopic

velocity of the electrcns, _ the stress tensor, E and B the

electric and magnetic fields exparianced by the gas _hinh in-

clude the constant applied electric and magnetic fields _ and

--_'Pei the m_nentum transferred to the electrons per unit volu,_

per unit time as a result of collisions with ions in the case

I

I
I

of a strm_gly Icnized gas or with meutrm/s in the case of a

weakly ionized gas.

In evaluating the collision term, Pei' account must be

taken of the long-_ nature of the Coulcmb force. If

I

I
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shielding effects are neglected, the collision cross-section

turns out to be infinite. In order to obtain finite results,

Spitzer and Cohen took electr_u and ion correlations into

account by making use of an effective cutmff distance, h, for

the Coulomb force. 22 The quantity h is referred to as the

Debye length. A more careful analysis making use of the Fokker-

Planck equatlcn with arbitrary electron and ion distribution

functions expanded in terms of Legendre polynomials was made by

Rosenbluth etal. 23 This analysis showed that the Spitzer and

Cohen formulation is equivalent to retaining the first two

terms of the expanded distribution func_m_s. Fr_ the Spitzer

approximation it follows 24 that the collision frequency is a

scalar proportional to w where w is the thermal velocity of the

electro_ (not to be ccr.fused with the turbulent fluctuating

velocities which are an a macroscopic scale) so that

The usual assumption that the stress tensor may be re-

placed by a pressure ia r_w made. It is further-as_ ttm_

the perturbations caused by the turbulence in the electrcsl gas

are adiabatic leading to the acoustic approximation for the

preSSUre.

Making use of the above approximations, (2-1) becames
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(2-3)

where a is the velocity of sound which is ccnsic_red to be a

constant assuming that any temperature gradients have charae-
f

teristic lengths much larger than the space scale of the tur-

bulence.

For a fully icnized gas consisting of protcns and electrons

the current density is

m

(2-4)

and Maxwell's equations are

_-7.__-- --_ (2-5)
_ ee

'_ E_ --- -" ,,) (2-6)

(2-7)

I
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I and

I _--/' _ _" 0 o (2-8)

I

I

!

I

In the above equations, NI is the ion number density, n

the electron number density, vI the macroscopic ion velocity,

f the permeability of free space', and _ the dielectric con-

stant for free space.

The conservation of mass for the electrons is expressed

by

I

I
I

l_z'lez',o

v,Z + _.vf I- a_ =o_ (2-9)

I ¢ -----_ [I o (2-10)

I

i

It will also be convenient to make use of the wave equation

formed by taking the curl of (2-6) and using (2-7) so that

(2-11)

i

I

Now each quantity is written as an average plus a fluctua-

ting part; thus, taking the Fourier transform of the quantity

I

I



I

I
-29-

I

I

A there results

(2-12)

I
where A(_,_ ) is the Fourier coefficient in question. _he

I

I
I

I

limits of integration are interpreted to mean that integration

takes place over time scale T and space scale V large compared

with the scales of the turbulence.

Equation (2-12) may be written in the form

A "- A -P- A (2-13)
)

I where

,_-j
WI

_(%_) du@_- (2-14)

I
The primes indicate that the values k - 0 and

I excluded.

I

J_JL (2-15)

_j " 0 _',e

In a frame for which _ ,, 0 the momentum equation becomes
i

I

I

I
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I

I

(2-16)

where third order terms have been ignored and terms belonging

to the zero-order or avere_e value equation have been left out,

In the subsequent discussion _ is assumed to be zero in the

new frsme.

I

I
I

In the new frame the equatlcn for the conservation of

electrons beccn_s

_7.___r÷ /u'._'p +_ =o,
--- _)_" (2-17)

I

I

In accordance with the assumpticn that the icns are sta-

tionary vI - 0 and NI - 0 so that Maxwell's equations for the

fluctuating quantities are

I

I
I _ZxE- -- _) t.

(2-18)

) (2-19)

I

I

I
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(2,,,,20)

_' _6 --g) o (2-21)

Making use of the vector identity

the wave equation (2-11) becomesI

I

I

I

I

I

I

I

I

(2-22)

(2-23)

The procedureto be followed now is to extract the

equations for the kth and _Oth Fourier component from the

above, solve for all fluctuating quantities in terms of the

turbulent velocities and substitute the results into the mo-

mentumequaticn. In order to linearize the resulting momentum

equation use will be made of the Heisenberg approximation as
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I
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I
I

I

I
I

I

I

I

developed by Tchen. It is convenient to discuss this aoproxi-

mation at this point; accordingly a short digression is made in

the next section summarizing the reascnir4 leading to the con-

cept of dynamic viscosity as introduced by Heisenberg and ex-

tended by Tchen.

2.3 Disc u@s.ion of Heisenber_'s D_mmlc Viscosity

In order to see how Heisenberg arrived at his concept of

an effective dynamic viscosity to account for turbulent energy

transfer the discussion, for the present, will be limited to a

neutral incc_ressible fluid in a state of turbulence. It is

assumed that Navier-Stokes equaticn 25 of hydrodynamics still

holds when the fluid is in a state of turbulence so that

- _± __2_+
(2-24)

where _* is the kinematic viscosit_ _nd P the Dressure.

Writing vi as an average plus a fluctuating part as was

first done by Reynolds, and in a frame for which _--iis zero

there follows

I
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- "_ _ + _x____.
(2-25)

Multiplying through by vi and using the stmm_tion can-

ventica, the energy equation is obtained and is

(2-26)

As is easily seen from (2-25) the second term in (2-26)

represents the non-linearturbulent energv transfer, After

Fourier analyzing and obtaining the relation for the average

energy contributed by the kth Fourisrmode it will be shown

how Heisenberg replaced the second non-lineartermby an

equivalent dynamic viscosity term.

In order to obtain the average energy equation a r_-lation

is needed for the contribution to the equation of a product

of two turbulent quantities A and B. For simplicity tildas

and explicit notation for the time deoendence are emitted.

I
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I

I
I

I

The definition for the space average of the product of the two

quantities A(r) and B(r) is given by

_A(C) r3(:) 7

- j._(__)_(__)d__. __• (2-27)

As before, the limits of space integraticn are taken to mean

integration over a volume large with respect to the character-

I

I
I

istic turbulent lengths.

The Fourier transforms for the quantities A end B are

(2-28 )

I

I

and

j ?k1_
• (2-29)

I Substituting these quantities into (2-27) there results

: Ach)__') - - -J5_9_'-- (_-3o)
|

I Now notlngthat

I

I



I
!

I

I _ o'(_-_,'_

I

-35-

_ _.3 5___' _ (2-31)

where _ is the three dimensional Dirac Delta function and

integrating over dr and dk' (2-30) becomes

I
I

I

I
I

m
(2-32)

By the Convoluticn Theorem (see Appendix B), the k'th

Fourier component of the velocity cross products involved in

the inertia tennis

(2-33)

I

I

I

To obtain the average kinetic energy (2-33) is used with

i = J and wlth k' - 0 so that

(2-34)

I
I

I

The contribution from the kth component to the average energy

is then,

(2-35)

I

I
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In a similar way the other terms of the energy equation

bec_

_/tr- c

(2-36)

and

t o,.

-_.,_,__c-__,_,_/_._,,_,_,.(2-37)

The pressure term does not appear since if the pressure

is written as

(2-38)

and use is made of the inccc_ressibility condition

(2-39)

that is

(2-40)

I
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it is seen that

indicating that the pressure term does not contribute to the

average energy.

Assembling all of the various ternm involved, the equa-

tion for the average energy of the kth mode is

where

(2-42)

_(A_,A')_=

-,,)o

-Z ___c )_(__.__')___.(2-43)

To indicate how the Heisenberg assumption is made it

is found convenient to define a spectral function F(k). This

is done as follows:

average value of v2 is given byThe

I
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which according to (2-B2) is

Now instead of integrating over the whole of k-space the

integration can be limited to a spherical shell of radius

between k and k + dk and a spectral function F(k) defined by

(2-46)

where / and _ are the azimuthal and polar angles in spherical

coordinates. For isotropic turbulence, F(k) is a function of

the magnitude of k only so that

(2-47)

It is clear that the spectral function F(k) represents the

energy density of the kth mode in k-space since the average

kinetic energy is

I
(2-48)

I
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Using the function F(k) in (2-42) and integrating from

0 to k, an equation for the total energy contributed by modes

L k results and is

(2-49)

where

V -

@m

(2-50)

The quantity Wk is the transfer function and represents

the transfer of energy from wave numbers smaller than k to

those larger than k. Heisenberg's assumption was to write Wk

in the form

f (2-51)

where _ is a dynamic viscosity analogous to

matic viscosity. The quantity _- is given by

Y_F(
_ -4,3-] )

_-*, the ki[ne-

(2-52)

where K is a constant.

By inspecting the form of q(k,k'), it is seen that the

!
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are involved in the transfer function. Tchen 2° has shown that

by assuming

___(,__t_, _..¢)__

and

JS___'_(-__')_.___'-__1

- - __j.-c ____-& (2-53)

(2-54)

one obtains Just the Heisenberg form of Wk. These integrals

represent the phase correlations between the Fourier coef-

ficients. The fact that the integrals are of this form is

shown by Tchen to follow from a statistical treatment of the

transport processes. An indication of the arguments used by

Tchen is given below.

Let the mean value of the displacement of a fluid element

be _,_ _ and the mean value of the second power of the disDlaoe-

ment be _&7 • Following Kolmogoroff, Tchen assumes that the

ratios I-2_2/'_' and I,#-_2/?" tend to a constant independent of

"_ as T approaches zero. The quantity _" is the time elapsed

as the fluid makes the displacement involved. Using these as-

sumptions and the equations of motion it is shown that
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(2-55)

and

J-- .J%

where _(&_-__'jisth_dyn_cviscosityco_'.sp_d_.,-_tothe
k'-kth mode.

In equation (2-49) the term Wk involves a transfer of mo-

mentum from the k'th to the kth mode; thus, there is a mort of

collision between eddies of characteristic size i/k' and I/k.

The right hand sides of (2-55) and (2-56) indicate that this

process may be thought of as consisting of a dynamic viscosity

and an eddy gradient. It may be that these functions are dis-

tinct so that the gradient forming eddies are independent of

the eddies involved in the dynamic viscosity; in this way the

dynamic viscosity may be written as

which leads to

!
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and

3_ s (2-58)

(2-59)

where the term "dynamic viscosity" will henceforth refer to the

quantity _" .

The two integrals (2-58) and (2-59) become (2-53) and

(2-54) for the k, _ part of the spectrum of _f".

2.4 Use of Dynamic Viscosity in the Present Context

It will be seen in the following chapter that the non-

linear ternm of equation (2-16) m_v be expressed in terms of

velocity correlations. These velocity correlations are con-

veniently given by equations (2-58) and (2-59) above; accor-

dingly, it is assumed that these equations remain valid in the

case of the Lorentz gas. To put these equations in a form con-

sistent with the analysis to follow, they are Fourier analyzed

with respect to time yielding



(2-60)

I

C2-61)

which then beccme the fundamental equations for the develc_-

n_nt of the theory in the present work.

I

!
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CHAPTER III

EQUATIONS INVOLVING FLUCTUATING VELOCITY FIELDS

3.i Fluctuatln_ Quantities in Tenns of Velocities

The equations relating the various fluctuating field

quantities to the velocity contain linear or first order

terms, and billnear or second order terms. Assuming that terms

of second order are less than those of first order, an iter_

ative procedure is used in this section to obtain the fluc-

tuating field quantities in terms of the velocities alc_e. The

conditions for which the second order contributions are less

than those of first order will also be investigated.

3.1.1 First and Second Order Density Expressions

Assuming that _ p/_ _ O and that the gradient of the av-

erage density is small; Joe., that the characteristic length

over which the average density changes is large with respect

to the size of the turbulence so that the plasma is homogeneous

on the average, the quantity _ may be neglected and the re-

lation for the conservation of mass becomes

F v.__-,,T-(f___), __ --0. (3-_)

Using the convolution theorem, the Fourier analog of (3-1)

I
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is

I I II I bv_

where the notations

l

I _: _(_-'_

and

(3-2)

(3-3)

(3-4)

1

1
have been used.

To solve equation (3-2) for

(3-5)

in terms of the velocities

I

1

1

I

I

I

alone an Iteratlve procedure is used.

lutlon term the flrst order approximation to

and is

r__,,=_- _ %..

Neglecting the convo-

is obtained

(3-6)

Using this value for _ in the convolution term, the second
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!

!

order contribution to _ is obtained and is

I II
(3-7)

! To evaluate (3-7) the assumption of local transfer is made

l

i

I

I

I

so that only eddies with size and time characteristics close to

those of the k, _J th eddy are involved in the contributions to

the convolution integral. An examination of the Tchen integrals

(2-60) and (2-61) support this assumption since the velocity

phase correlation seems to be such that the integrand is a

peaked function behaving much like a Dirac Delta function.

Under this local transfer assumptica and allowing for a factor

A_ of order unity, _(_) may be written as

(3-8)

1

!
Now making use of the Tchen integral _2-61) the final expres-

sion for the second order contribution to the density is

!

!
where

_J_ - (3-9)

!

!
A_- i_,Ay. (3-1o)

1
1
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In order that the above iterative procedure be valid, it

Ie_°'l/I__'_1_ I

must be that

(3-n)

leading to the condition

A_ _- _, _. (3-1_)

3.1.2 First and Second Order Electric Field Expressions

Turning now to the wave equation (2-23) and Fourier analy-

zing there results

(3-13)

where LOp is the plasma frequency given by

| _=

I

I
and the substitution

9

I

(3-14)

I

I
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I

has been made, c being the velocity of light in free space.

Again using the iteration procedure in conjunction with

equation (3-13), there results

I

I
WhOre

4- _'( % (3-16)

_'_ -__ _[_,

- _-_ c:_']

I and

,
I with

(3-,].7)

(3-18)

I

I
(3-19)

I

I

I
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which is a dimensionless constant involving the phase velocity

of the Fourier conrponent and the velocity of light.

Using (2-61) and (3-7) the second order expression for the

electric field (3-18) becomes

(3-20)

For the above iteration to be valid it n_st be that

(3-21)

or

(3-22)

< Ij

there being no sum ca i.

If the axes are rotated so that the propagation vector is

along one of the coordinate axes, the above condition becomes

the inequality (3-12).

3. i.3 First and Second Order Magnetic Field Expressicns

The next task is to solve for Bi in terms of the velocities.

!
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I

I

I

From the Fourier analysis of (2-20) there results

(3-23)

I also the divergence of B is zero so that

(3-24)

I
After inserting the values for the plasma frequency and the

I velocity of light in the three equations (3-23) it follows that

-_ '_[y]

I and

I
where

I __
I

(3-25)

(3-26)

(3-27)

(3-28)

I

I
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and so forth.

Using (3-24) to eliminate Bz , and eliminating Bx bet-

ween (3-25) and (3-27) it is found that

(3-29)

As before the first and seccnd order contributions m_v be sepa-

rated so that

Y = _ I)4. ,1_, ) (3-30)

where

(3-31)

and

(3-32)

with

, 1

[_:7_'L_[__ r,<-.+<,.,_=,<<+..7 (3-33)

I
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I

I

and

(3-34)

I

I

I

It is easily seen that the conditions that

I

I

are that (3-20) holds and that

I • (3-36)

I _hese conditions will obtain when (3-12) applies so that (3-12)

I is the ccnditicn for the validity of the iteration procedure

in all cases.

I

I

Expressions for all fluctuating quantities in terms of the

fluctuating velocities have now been obtained. Assuming local

transfer and using Tchen's integrals these quantities become

I

(3-37)

(3-38)

I

I

I
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(q
I

gC =c

__
(3-39)

2 AIl (3-40)

(3-41)

mld

(3-42)

where

L_]_'_:[ (3-43)

and

(3-44)

the other components of B being obtained by a cyclic per-

mutation of x) y, and z.
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I

I

3.2 The GenerallzedMcmentum Ec_/_O_.

The procedure now will be to use the expresslcns ob-

tained in the previous section to linearlze the momentum equa-

I

I

I

I
I

I

tion so that all quantities may be exp_._ssed in terms of the

Fourier ccmpcaents of the fluctuating ve i,ocities; thus, the

momentum equation (2-16) is

~ _.

._ e _"

(3-45)

so that _ _ in accordance withNow setting _J_

the form of the colllslonterm for a fully ionized gas there

i results
N

v A
I "--- e (3-46)

I Since

I

I
the mcmentum equaticn (3-45) becomes

(3-47)

I

I

I
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I (3-48)

I

I

I

I

I

I

The second order terse in (3-48) which must be linearized are

- _ )

-_ _)_"

(3-49)

(3-50)

(3-51)

(3-52)

I and _

(3-53)

I
To first order, the continuity equation is

I

I
(3-54)

I

I
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so that

V,(_el
(3-55 )

where the identity

(3-56)

has been used.

Fourier analyzing and using the value for

previous section it is seen that

, _ el S

/

j ,"_ _.'

_ the

(3-57)

where Tl(k , W ) is the k, _ Fourier transform of Tl(r,t).

Making the local transfer assumoticn as was done in e-

valuating (3-7), the integral

",_._ , , _,, ,#_...__ %, --_A,_ju _ ,%' . (3-58)

!

It is to be noted that the constant AI depends on the ratio .

IC'tl) r_")_,s .= for a semi-ccmpressible plasma for

i
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l

l
which _ may be neglected.

In accordance with the above and making use of the Tchen

integral (2-61) the inertia term becomes

l

I

I
I A t - I- ,_/. (3-60)

I
I

I

I

For a semilco_0resslble gas the quantity A1

AI_ i.

- i, otherwise

Turning now to T2(£,t) and using the Fourier expression

for the first order fluctuating electric field obtained from

(3-39) there results

J
I - 6z,C,.j _ "_,,_,_'].
I

Assuming local transfer, the quantity _/_ my be

I brought outside the convolution integrals so that

(3-61)

l

I ", (3-62)

i

l
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(3-63)

I
remain to be evaluated.

I

I

Making use of relations of the type

-C-'_'_-_ : L--_'_'_'
H

(3-64)

I

I

i

and the assumptlan of local transfer, (3-62) and (3-63) may be

written

(3-65)

I

I

and

]z_--_3:_;_ _ __'" (3-66)

I

I

I

I

I

where A2 and A3 are constants to be determined experimentally.

Both A2 and A3 are zero for a semi-con_ressible plasma since the

integrands come ultimately from seccnd order terms in the den-

sity fluctuation. In this wa_ the term T2(k,_ ) becomes

k'

(3-67)

I
I
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Taking the average magnetic field to be in the z-dlrection,

the second order contribution due to the average magnetic field

is

I

- LHy _-.
_t

^ !

"_" _V'_< y
(3-68)

where

l__la
W_, -- V_1 (3-69)

^ A A
is the cyclotron frequency. The quantities ax, _, and az

the unit vectors in the directions indicated.

Proceeding as before

- _-_y]- _.
(3-70)

The velocity-magnetic field second order term is of a

rather complex nature consisting of contributions of the type

I
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I
o

_J"'_ c_'A'"L e _ .I-_,
) (3-71)

wh_re the subscript i indicates the ccmponent of the contri-
t

buticn. The other subscripts J and 1 take on different values

depending on which part of the cross product is under consi-

deration. Using local transfer and Tchen's integrals these

contributions become

(3-72)

The evaluation of the collision second order term is

straightforward and is

_-__(_,)- _,_, ,..,,,.,__. (3-73)

Having evaluated the second order terms of the Fourier

analyzed momentum equation for a compressible plasma subject

to the condition (3-12) it is now possible to write down the

linearized from of the momentum equation including the effects

!
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l

I

i
I
I

of turbulence; accordingly,

I
(3-74)

where T4i(k,_ ) is given by a sum over terms of the type

(3-72), and the field quantities other than the velocity are

given by equations (3-37) to (3-40).

I

I
I
I

3.3 The Seml-c,cmpresslb,1 e Approximation.

At this point the assumgtlon will be made that the plasma

is semi-compressible. By the term "semi-compressible" it is

to be understood that the ratio of the fluctuating density

to the avera@e density is small enough so that second order

i

l
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I
I
I

I

tez_r_ involving densltv fluctuations m_V be neglect:;,d.

this condition there results

A,_I

U_der

(3-75 )

I and the momentum equation (3-74) becomes

I

t

(3-76)

The quantity T4i(k , _0 ) involves contributions from the

second order term ._ (_ _ _ ). The x-ccmponent of this second

order term is

(_ ×_)× . (3-77)

I
From (3-41) and (3-43) the y-component of the fluctuating

I magnetic field is

I

I

I
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I

I (3-78)

I
Obtaining Bz by a cyclic permutation of the subscripts

and assuming local transfer, (3-77) becomes

I

I wher_

(3-79 )

I

I
(3-8o)

I

I

Now from a Fourier analysis of the identity

_-_'_/IrC(rl_)"_r(-'tlPt - 5(-)- _X (3-8i)

I
where there is no sum an the index i, and remembering, that ex-

I

ponentials are involved in the Fourier analysis, it follows

from (2-61) that

H_ I I

(3-82.','

I

I
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I Using this result and (2 61)in (3 80) the quantity

I _;_ ____,

I +(_._,_ __ __ _._.
(3-83)

I
From the above, the llnearlmed form of (3-79) is

I

I so for the x-

I °

I _ _ _ _ _" _

4.. __--_,_ .L
I _ x _)_ _ _ _,_._ _3-85)

I

I

I
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the other ccmponents being obtained by a cyclic permutation

of the subscripts. The remainder of this study will be based

on the three momentum equaticns of the type (3-85).
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CHAPTER IV

TRANSPORT PHEN_A IN A SEMI-COMPRESSIBLE PLASMA

4.0 Introduction
la i i

It is usual to employ a particle description to derive

theoretically the transport properties of an ic_ized gas. In

the case of a Lorentz gas without turbulence; i.e., ignoring

non-linear terms, it is possible to show that a macroscopic

point of view may be taken in obtainir_ expressions for such

transport quantities as the ccnductivity, mobility, and the

diffusion coefficient. Ohm's law for fluctuating quantities,

for exhale, maF be written

I

I where

| _- e___)

I

I

I
I

J" = _-" _" (a-i)

(4-2)

and where _" is the c_mm_ctivity ter.sor.

By inspection of (4-1) and (4-2) it is easily seen that a

mobility may be defined according to

(4-3)

I

I
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I and the conductivity tensor expressed as

p _ __ o (4-4)

I _.nthe presence of turbulence, however, it is not pos-

I

I

I

I

I

I

sible to write Ohm's law as in (4-1) nor is it possible to de-

fine a mobility according to (4-3) in view of the ncn-linegrity

of the equaticas of moticno Because of this ncn-linearity the

fluctuations are of a random nature so that the fluctuating

field quantities have no unique FOurier decomposition; and the

mobility, for instance, which depends ca the spectrum, is also

of a zmndcm nature,

In view of the fact that the Fourier analyzed equations of

motica of a turbulent Lorentz gas as developed in previous chap-

ters are linear, it is possible to avoid the above difficulty

I

I

by deflnlr_ the mobility according to

(4-5)

I or in component form as

I (4-6)

I
where the superscript "a" indicates the sunmmtica over the

I

I

I
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various classes of modes of which there are six as will be

shown later@

To show how the mobility as defined by (4-6) may be useful

it is necessary to make a com_ection with this definition and

known quantities. Taking a case for which one class of modes

is ckm_Lnant and considering two-dimensional turbulence for

simplicity, the x-component of (4-6) may be written

(4-7)

Multiplying (4-7) by its cc_olex conjugate there results

i

I
where the c_dence on _AJ

I
I

I

-ci(_.)r_(5)

is to be understood°

(4-8)

In this chapter it will be shown that

I
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I

I
A

(4-9)

I and that

I
I

I

(4-10)

where f(_, UJ ) is detezmt%ned by the so-called "dispersion"

equations.

According to the above, then, (4-8) may be written asI
I ____: F__ (2)

I
I

I
I

I

I

(4-11)

In this wa_ all of the quantities on the right hand side are

known except for the electric field term which may be derived

theoretically from a statistical analysis.

A further simplification is possible if the electric field

term in (4-11) may be written in the form

I

I

I
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A

(4-12)

so that in integrating (4-11) over k-space in spherical co-

ordinates (k, _ ,# ), there results

(4-13)

or

x '--,<.ritzy7
_11 ), (4-14)
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I

I

where the electric field correlation may be measured in the

laboratory.

In certain special cases such as the inconloressible case

I

I

where the fluctuations in the magnetic field are neglected, it

m_ turn out that the mobility and the function f(_) are inde-

pendent of k so that (4-8) may be integrated _diately with

the result

I

I
• (4-15)

I
The extension of the above to three dimensional turbu-

lence is straightforward. When more than one class of modes

I

I

I

are present there seems to be no reason why cross products bet-

ween mode classes should appear since there is nothing in the

theory to indicate that the contributions to the fluctuations

from different classes are correlated. With this remark, the

extension to more con_llcated turbulence is easily made.

I

I

I

The expression for the mobility for different modes may be

obtained from the momentum equation by inspection as will be

seen° In general the result will depend on the wave-vectoro

By using the so-called "dispersion" equations, the dependence

I

I
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on the magnitude of the wave-vector may be eliminated and the

index of refraction for the various modes obtained. Before

proceeding to a detailed analysis of certain degenerate cases,

the general form of the momentum and dispersion equations will

be ccrmidered in the next section.

4.1 General Direction of Propagation

Far propagation In the general case the wave-vector com-

ponents may be written in terms of spherical coordinates so

that

(4-16)

(4-17)

and

(4-18)

Now neglecting the collision term and slightly restricting

the study to waves for which the phase velocity is much greater

than the velocity of sound so that the pressure term may be

neglected, (3-85) becomes
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I

I

(4-19)

c _ y

(4-20)

1

I

I
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I In this way the dispersion equaticn involving the x-

component of the electric field is

I
I

I
+i p_a

I

(4-25)

with similar equations for the y- and z-ccmponentso

Because of the obvious complexity of the momentum and dis-

I

I

persion equations in the general case, only two degenerate

cases will be considered in detail; Fourier waves propagating

along the z-axls, and those propagating along the x-axis.

I 4°2 Propa_atlon along the z-axis

t
I

I

The first class of cempcnent waves which will be studied

are those whichpropagate along the z-axis so that

(4-26)

I
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Since the collision term and the pressure term are being

neglected, (3-85) becomes

(Y+_)_- _,_',,, -- e_.E" (4-27)

and the other momentum relations are

and

(4-29)

where

(4-30)

and

(4-31)

Solving for the velocities in terms of the electric fields

in (4-29) to (4-31) inclusive, the following equatiaas are

obtained
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In order to eliminate k from the expression for the

mobility use is made of the dispersion determinant. This

determinant is obtained by substituting

EL-<e _ r"- <, "--_""d_ ( 4-36 )

I
into the three momentum equations (4-27,28,29)° The three

I equations from which the dispersion determinant is formed are

(4-37)

I

I

I
I

and

( v+<:_),%:o_

(4-38)

(4-39)

I

i _ : _-_F- (4-40 )

I
In order for the dispersion equations (4-37,38,39) to be

I consistent it must be that

I

i
il\
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I

I

! (4-41)

!
!

This dispersion determinant will vanish under several

different conditions yielding longitudinal and transverse modes

propagating in the z-direction. The nature of these modes will

! now be investigated more closely.

I

I

I

I

4.2.1 Longitudinal Modes

Motion for the longitudinal modes is restricted to the z-

axis so that vz _ o and vx - vy

(4-S9) that

- 0; accordingly it follows

I

_w
(4-42)

I that is

!

!

(4-43)

Since the cyclotron frequency does not appear in this ex-

pression these particular modes are independent of the applied

!
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!

!

magnetic field and are of the same form when no average mag-

netic field is present.

Defining the cc_plex index of refraction nc as

!

i city of the waT, (4-43) may be written

(4-44)

which is the ratio of the velocity of light to the phase velo-

(4-45)

!
whore

(4-46)

!

!

is the characteristic turbulent frequency discussed in section

4.4.

Solving for the complex index of refraction there results

! .; ,_-Lt_C_)"C. _G tj t_ ]o (4-47)

!

!
At this point it would be well to recall the condition of

the val_dlty of the iteration procedure which is (3-12)

!

!

!
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A.,__ _cl< I.
(4-48)

For a strictly seml-ccmpressible plasma it was mentioned in sec-

!

tion 3.2 that AI "- 0 ; however, it is to be expected in an
!

actual case that A1 will be finite. Defining

T- _l_tl
(4-49)

and for a value of A[ whlchmay be as large as 1/lO, a mode

for which T< I m_v still be considered to be in the semi-

co_ressible region; accordingly for the remainder of this chap-

ter the condition

_- < 1 (4-50)

will be assumed to hold. This condition is, of course, un-

necessarily restrictive if A[<< 1/lO.

From (4-45) in the case of negligible turbulence (__@_o)

It ma_ be noted that

_J -'- CA)_p (4-51)

which is the condition for the well-knownplasma oscillations.

The mobility for the longitudinal waves under

I
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consideration in this section is most easily obtained from

(4-42) in the form

(4-52 )

which when substituted in (4-35) results in

/_ : _ a_ _L (4-53)

which is the mobility for these waves. That these modes are

strongly damped can be seen from (4-47) and the following

discussion.

The complex refractive index may in general be written

as

_C : _0_- _' _ ; (4-54)

where nR is the refractive index and nI is the extinction index.

The significance of these two quantities may be seen in view of

(4-44) by writing the complex wave vector as

: (4-55)

where _ is the wave vector and kI the attenuation vector.
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I hel

cussian it follows that

I

I I_,,,I-I_:l

2 is imaginary for the longitudinal modes under dis-Since nc

(4-56)

I

I

I

indicating that for these particular modes the amplitude falls

to 1/e of its original value in one wave-length. Note that the

dancing con_s only from the inertia term, attenuation of the

mode being due to momentum transfer to modes of higher k-value.

This type of momentum transfer from larEer to smaller eddies

I

I

I

is in analogy with the hydrodynamic case for which the attenua-

tion of large eddies is also due to the inertia term. Evsn-

tually, of course, a critical eddy size is reached for which

the collision term, neglected above, becomes important and

serves as the ultimate mechanism for the dissipation of energy

I by thermalization of the turbulent motion.

I

i

I

I

!

4.2.2 Transverse Modes

In this case the motion is transverse to the direction of

propagation so that vz - 0 and the velocity vector is confined

to the xy-plane. For this situation the dispersion determinant

(4-41) yields

(4-57)

I

I
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or

(4-58)

which determir_s the complex index of refraction nc in terms of

the other parameters. For convenience the symbol "nc" will be

used in all cases for the complex index of refraction so that

it rglst be stressed that its form will in general change for

I /

I

I

each different mode.

Since the quantity

to m_itiply through by (n2c

is given by (3-19) it is convenient

- i) yielding

- :0
C _ j

(4-59)

I

I
with the possible solutions

I

I

I

I
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I
m
I

I

I
I

I

C_-,_(,__)-_]".f_w • (4-6o)

In view of the complexity of (4-60) and since

(4-61)

I
I
I

must hold in accordance with (4-50), several special cases in-

volving different values of the parsn_ters of the plasma will

be discussed.

Before beginning the discussion of special cases it seems

best to study solutions of the general quadritic equation when

I
I

I

a condition such as (4-61) holds.

_he general quadratic equation is

& _ _ + c : 0 J (4-62)

I with the possible solutions

I

I

I
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(4-63)

I

I

I

I

Imposing the condition

I_l < I
(4-64)

limits the solutions in a way dependin_ on the quadratic coef-

ficients. Several possibilities are as follows:

I

I
(2)

Under these conditions, both roots satisfy (4-64).

II_I<1_ I _'c

Here the roots become

I
(4-65)

I with the condltica that

I I_I V_- _ I , (4-66)

I
If it happens that

I

I

I
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I

I I ,%xI,_7 )
(4-67)

I then

I

I

I
(3)IBI_I.

If

I
I l'- _l '/_I_

(4-68)

(4-69)

I

I

I

I

I

(4)

then both roots (4-63) can give valid results.

Only the positive sign in front of the radical in

(4-63) may be used with the additional requirement

that

(4-70)

I :Implying that

I

I

iI
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!

I

i

I

so that the root may be approximated by

(4-71)

I

i
I

I
I

I

I

Having completed this preliminary discussion, it is now

possible to begin an analysis of the transverse modes under

various conditions. The parameters to be varied are the charac-

teristic turbulent frequency _ , the electrca cyclotron

frequency _ , and the Fourier frequency _ .

4.2.2.1 Limiting Case of No Turbulence. In passing to

the case of no turbulence (Jk-* _ ), (4-59) becomes

-c(l± _,, _.,

%

(4-73)

!
(4-74)

!

!
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I

I

In order to calculate the mobility for this situation as

well as for the others in the remainder of this chapter, it is

easiest to use the relation

I ¥_ & = _± L_ b (4-75)

I

I
which follows immediately from (4-57).

Substituting in (4-35) there results

I

I
1

(4-76)

According to (4-20)

A

(4-77)

I

I

I
I

so that in view of (4-41) the mobility ms_v be expressed in

terms of _ alone for any particular mode.

4.2.2.2 Moderate Turbulence aud Moderate r_netic Field.

Under these conditicns (8-59) becomes

I

I

I
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(4-78)

i sinceIBI> I _ =_ mot m_ beused._Is

_ e,senti__ thete__ _ _ be
i dropped so that

I
I

I

/7

t 1

(4-79)

or

I

I
I

i

(4-80)

where

(4-81)

Since equation (4-71) must also be satisfied, it must

l

l



I

I
-92-

I

I

be that

4._<I (4-82)

I

I
In the case of particularly low magnetic f_lds

and stronger turbulence, it might be that

I

I
_vlo

in which case w_ting (4-80) as

I

(4-83)

(4-84)

I there results

I _ ~(_)_ -_
(4-85)

I
I

I
I

To calculate the mobility we use the quantity

Since J_- "7 _) and from (4-831, I__ I _ 1
so that

I

(4-86)

I

I
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I or _ _ _q

(4-87)

I Substituting this value-for

I bi _ity to second order is

J,_ -_---.- /,
I '"_-_"_'__'

in (4-76), the mo-

For high magnetic fields and relatively weak

turbulence, it ma_ be that

I

I

(4-88)

I
I

I

I
I

I

and

in which case (4-84) yields

Iv

FIR--_ 0

(4-89)

(W'_b) (4-90)

(4-91)

I

I

I
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I (2)

I

I

I

I

I

w_ _ wfsl.

In this situation (4-59) is

--_ -_.

Tald_g the positive sign first, I_I _ I

the first term may be neglected leading to

(4-92)

so that

I

I

I

(4-93)

which is simply the appropriate form of (4-74), the

n_n-turbulent case.

I

I

Similar results are obtained with the negative

sign unless _2y_---_ I in which case I_1_ I •

For this situation, the results depend on the quantity

I (4-94)

I ,_ I___-I,i
IP"I

I
there results

I

I

I
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I

I

I

I
and

I

I
as the two roots of (4-92).I

If l*_I _ _ the roots

I (4-65)

are according to

I

I

I

I

I

#

| _c. = :t::

I

I

(4-95)

(4-96)

(4-97)

(4-98)

I
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I

I

in accordance with (4-68).

Expressions for the index of refraction and the

mobilities may be obtained from these results in the

i usual mm'_er.

(3) _ _ < I

I

I I i i_

For the higher Fourier frequencies considered here,

the first term in (4-59) may be neglected and the

I

i (4)

results are similar to (4-74) with the appropriate

approxlmatlcrm.

I In this case, (4-59) becomes

I

I

I

I

_d I_I_ I leading to the possible root

(4-99)

(4-1oo)

:

I

which; however, violates the conditicn (4-50) so

that the turbulence is too strong for the iterative

I

I

I
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I 4.2.2.3 Moderate TuFbulence and High Magnetic Field.

i

I

I
I

to the non-turbulent case (4-74).

w_/__ _ sothatII,I .: I
is

With one exception, to first order, these conditions lead

The one exception is when

. In this instance, (4-59)

(4-iOl)

,

!

with the roots

(4-102)

!

I

I

I
I

4.3 Propagation along the x-axis

The other degenerate case for which the equations in sec-

tion 4.1 become manageable is for propagation perpendicular to

the magnetic field. The axes are chosen such that

(4-103)

I

!

Again neglecting the collision and pressure terms in

(3-85), the mcmentum equations became

.m
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I

i

!
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i
I
l,

and

where

!

I which 71eld the mobility in the form

n o
I ,_ /._._ _

i

i

,!
l

(4-104)

(4-105)

(4-106)

(4-1o7)

(4-1o8)

(4-109)
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(4-110)

i

!
I
!

Making use of (3-39) in the momentum equations, the dis-

persion relations are obtained and are

a/

(4-111)

(4-i12)

m and

I
I

l

I

so that the dispersion determinant is

-u_ 0

I
whereagain

I _:_ __.

I

(4-i13)

(4-i14)

(4-115)

,!

I



I
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-lO0-

I

I

4.3. i Longitudinal Modes

Longitudinal modes are those whose motion is confined to

the x-axis which is the direction of propagation so that

vx # 0 and no velocity cc_oonent exists in the yz-plane.

Under these conditions the mobility is easily obtained from

I

I

I
which comes from the dispersion determinant.

lation, the mobility is given by

(4-116)

Using this re-

I

I

I

(4-117)

The c_lex index of refraction may also be obtained from

(4-I16) in the form

I

I which ma_ be rewritten

(4-118)

!

!

I

!
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I

I -_
I -__(,-!_:°.
I (4-119)

I 4.3. i.1 Limlting C.as.eof No Turbulenc e.

no turbulence (/_--) _ ) there results

!

I _-' _

In the case of

(4-120)

I SO that the mode is nor_.propagattr_ if _U-_' t_p .

4.3.i.2 Turbulence with Moderate Density. Here the

will be considered. Since

I
I

I

so that
I H-at

_- _).n. ( I- _,2.

it n_ast be that

I1_1_1

! (4-121)

!

!

I

I
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I There are two general situations to be considered.

I ing quation (4 119) in the form

I

I (,-5)

I I---" % _V_ / ..I

(4-122)

I along with the above approximation, the results are

I
i

I
I

and

U,,/ z-

_:l- _,. (4-123)

(4-124)

I The other possibility to be ccnsidered is

I (2)

I
I
I
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I

I __+_c-_ -,_

I ÷_('-_):°

For this case, (4-112) becomes

(4.125)

i so that

'_-l_t,)-' (4-126)

I is the only root.

I
4.3.2 Trarmverse Modes

I

I

For these modes, motion is restricted to the yz-plane

which is transverse to the direction of propagation so that

the dispersion detemnlnant yields

I
which rewritten is

I %

I

!

(4-127)

(4-128)

I

I

I



I

I
-104-

I E_oloying the condition (4-50) in the form

(4-129 )

i
equation-(4-]28) becomes

I
(4-130)

I so that

I N)( -c)+c_ -
(4-131)

I

I
i

This is the root corresponding to the classical result slightly

modified by the turbulent term. In maklng the approximation

(4-]29) the strictly turbulent mode; i.e., the mode which would

not appear in the absence of turbulence was discarded.

l

l

I

4.4 Summaz_

Before going on to a numerical calculation of various

quantities connected with the degenerate cases discussed in

I

I



I

I

I
I

I

I
I

I

I
I

I
I

I

I
I

I
I

I
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this chapter it may be well to summarize some of the main

results concerning the modes present in a turbulent plasma.

By examining equation (4-25) and keeping in mind that the

quantity _ involves a k2 term in the denccLtnator, it is

clear that each of the dispersion equations is of second deg-

ree in k2. The dispersion determinant formed from the coef-

ficients of the velocities in the three equations of type

(4-25) leads to a sixth order algebraic equation in k2 so

that in general six classes of modes are expected. It might

be mentioned that although twelve solutions for k result, each

of the k2 values represents two solutions travelling in op-

posite directions.

In previous sections, two degenerate cases of Orooagation

along and propagation perpendicular to the applied magnetic

field were examined. General expressions for the ccmolex in-

dex of refraction were obtained for each mode from which the

mobility may be calculated. Some of the salient aspects of the

modes studied are sunmmrized in figures 4.1 and 4.2. A_ne

various types of mode are indicated with a reference to the

section in which they were studied. The turbulent modes are

numbered with Roman numerals for future reference. Since any

motion of a physical plasma may be described by the three

classical modes as discussed in reference 28 taking the ions to

I
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i_nobile, it m_v be concluded that the turbulent modes are

representative of the mixing brought about by the non-linear

terms of the equation of motion. The term "turbulent mode"

is employed in this work with the understanding that these

modes are actually pseudowaves cc_otulded from the classical

modes. The relative importance of these turbulent modes is

dependent on the value of the characteristic turbulent frequency

which was defined in section 4.2.1. It may be well to

I

I

discuss briefly the physical meaning of this important quan-

tity.

The quantity ._- appears in the various momentum equations

studied in two possible ways;

I
(4-132 )

I and

(4-133)

I
I

I
I

as can be seen from the typical momentum equation (4-58) upon

division by _0 .

The characteristic turbulent frequency may be written as

ZWC

/_ ) (4-134)

I

I
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I

I

I

where A is a characteristic interaction length between modes.

Now since

_C = _ 3 (4-135)

! a ccc_lex Fourier wave length may be defined by

i e_ - _ ) (4-136)

!
so that (4-132) maF be written am

! A

I

!

(4-137)

indicating that the contribution from this term depends on the

ratio of the ccc_lex wavelength of the Fourier component to

I

I

I
I

I

the characteristic interaction ler4_th which approaches zero

as the turbulence decreases ( _(k-_ _ ).

Now writing (4-133) as

_2. Z

P

or more slmplyas

!

I

!
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I

I _-_ _ ,
I

I

I

I

I

I

I

I
I

I

I

I

I

I

(4-139)

(4-i 40 )

it is seen that the contribution C2 depends cn the ratio of

the characteristic interaction length to the plasma wavelength
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CHAPTER V

COMPUTATICN

5.1 Introduction
i I I

In this chapter the mobilities and indices of refraction

will be confuted for the degenerate cases considered in the pre-

vious chapter. _he results will be displayed in graphical form

in the final section.

In the momentum equations (4-27,28,29), use was made of

the following quantities:

(5-I)

(5-2)

(5-3)

(5-4)

I and

U2 _

(5-5)

I

I
These variables are usedinthepresent chapter also in

addition to the quantities

I

I
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I

(5-6)

I R - _ (5-7)

I
and

(5-8)

I

I

I
I
I

where R represents the ratio between the characteristic tur-

bulent interaction length and the plasma wavelength. The quan-

tity S is directly proporticnal to the average magnetic field.

In the graphical representation of the results obtained in this

chapter, Y will generally be enmloyed as the running variable.

With these new definitions, there result

#

I (5-10)

(5-11)

I

I
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5.2 Determination of the complex Refractive Index

I

I

5.2.1 Propagation along

Making the above substitutions in the dispersion equa-

tions (4-17,18,19) there result

S
(5-12)

-0 (5-13)

I and

I

I
where

(5-14)

I 5.2. i.1 Longltudlnal Modes. Since vz _ O,

(5-15)

(5-16 )

I
and the index of refraction is

I

I

I
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i
I _: t-_-_l'- _]"_ _'

F_y'", "]_

l [y,._.],
I

I o,s_ ,-±._J_._,,,.

I The results for k - kz and vz ¥ 0 are then

(5-17)

(5-18)

(5-19)

(5-2o)

(5-21)

(5-22)

l
and

(5-23)

l

I

i
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I _se r_:

the magnetic field, S.

I 5.2.1.2 T.r_usverse Modes. _Is is the case for which

vx # 0, Vy # 0, vz - 0, and kz - k, it follows then, from

I (5-]2,13) that

I
which may be factored and w_itten as

I
I c_:_.

I By convention the sign is included in S so that S may be

positive or negative.

I Since

I
I a quadratic equation in n2 results which is

i _ _ ," __

. ,r, I _s_
I _- 6 L'- -Y=+7J =_"

It is to be noted that these results are indeDendent of

(5-24)

(5-25)

(5-26)

(5-27)

I

I

I
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!
i
i

'It

!

where

I and

I

I
The final results for the transverse modes are then

I

(5-28)

(5-29)

(5-30)

(5-31)

(5-32)

(5-33)

(5-34)

(5-35)

I
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!
l

l

I
i

!

I
i

I

-117-

(5-33)

(5-34)

(5-35)

(5-36)

and

_hich are convenient forms for numerical com_utation.

5.2.2 Propsgatlon Perpendicular to

5.2.2.1 I_tudlnal Modes. The relation for the complex

index of refraction cams frcm (4-118) and from the fact that

vz ,,0 so that

!
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I
I
I
i
I

I

I

I

I
I

-i18-

+-C - r<y-,4)n_

This equation is quadratic in n2
C

and is of the form

where in this secticn

A_,=_× )

and

C:_-I - _

leading to the following results

(5-38)

(5-39)

(5-4O)

(5-41)

(5-42)

(5-43)

(5-44)
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l

i

!

(5-45)

(5-46)

(5-47)

I
i

I
t

and

r (

5,2.2.2 T_. verse Modes. Again the propagation here is

along the XlaX_s| but the particle motion is in the yz-plane.

!

1

From (4-Iii,i12), the dispersion relations are

i'cy_ 'Q&-y (5-49)

and

l
I
i

(5-5O)

Unforttnately these equations do not show the symmetry

i
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I

I

obtained before in similar cases and there results a cubic in

n2 which is
c

R
i

°R

(5-51)

I
This equation is of the form

(5-52)

I

I

where

%--%+;Q (5-53)

I (5-54)

!
and

I
(5-55)

I

I
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I
I
I
I
i

!

The quantities on the right hand side of the above equations

have the values

p_ -- '_'=.(l-yz);

_..L-

,_,. --I 4- -

(5-56)

(5-57)

(5-58)

(5-59)

I

I

I

I

and

_=-0.

(5-60)

(5-61)

I To obtain the reduced cubic, the substitution

!
(5-62)

I made leading to

I
0

(5-63)

I

I
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I where

I

I

I

I

I

C5-65)

_here are essentially two methods of solving the reduced

c_Ic_ One of these involves the taking of cube roots and leads

I

I

to some difficulty in ccmblnlng the contributlcna to Z. The

method used here is that first publlshed by Cardan (1545).

First making the substitution

I Z.= T'- _3 I" _ (5..66)

I
t_re _sul_

I

I
T3 C5-67)

i

I

I

It _ l@lily seen that this is a quadratic in T3 of the form

_7 _" _. (5-68)

I

I
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I

I
i

I

In solving (5-68) methods similar to those used in solving

the quadratic equations obtained previously are used° One

value for T3 is then selected. It turns out that the other

root of the quadratic will lead to the same results obtained

below, but in a different order.

Now the following quantitles are formed

I (5-69)

I

I
I

I
I

_ere

: w"g T_

(5-70)

(5-71)

(5-72)

I

I

is one of the cube roots of unity.

_he results for the square of the complex index of re-

fraction for the transverse modes follow and are

I F,+..,- T,..-_ e_.+

(5-73)

(5-74)

I

I
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I and

I

I

(5-75)

The refractive index and the extinction index m_v be ob-

tained by using (5-46,47,48)°

I
5.3 Determinatlon of Mobilltles

I

I

I

5.3.1 Propagation along

For convenience, the quantity /&#_ is factored from the

mobility tensor (4-35) so that the mobility components are of

the form

I

I

I

(5-?6)

In order to obtain generalized mobilities the above compcaents

are written in terms of R, S, and Y defined above° The results

I

I
!

of these substitutions are summarized below°

5.3.1.1 Lcngitudlnal Modes. For modes for which v I Vz |

,_- _-_e(_y) (5-77)

I 5.3.1.2 Transverse Modes. For these modes the motion is
i

I

I
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I
I

I

I

I
I

I

I
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in the xy-plane, The mobilities for this case are

!

v. y p *-_.S

/U.Xy = e__,[ -SY (._"l)],I_l%_i__ sY

(5-78)

(5-79)

(5-8o)

and

2#2_.y - --j,L4y,_. (5-81)

Here again S can be less than zero. The sign of S indi-

cates the polarization of the mode.

I

I

I
I

5.3.2 Propagation along the x-axis

Expressions for the mobilities are obtained from (4-109)

and (4-110). These are summarized below,

5,3.2.1 Lon_itudlnalModeso From (5-9) and the general

expressions for the mobilities

I

I

I

5°3°2.2 Transverse Modeso From (4-110)
I II I

(5-82)

I
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+ _ _Y + _ (_ +_)

4[,s_ _-y? ;

I
then. from (4-i09)

| . _ e__.Z.

I

× [_5]-'I

I
and

I q

It is to be noted that

(5-83)

(5-84)

(5-85)

(5-86)

I
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I

I

i

I

I

i

I

I

I

I

I

i

I

I

i

I
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(5-87)

5.4 Graphical Results

Using the IBM 1107 computer at Case Institute of Tech-

nology, the more important expressions of this chapter were

evaluated for vaylous values of the parameters

y - _/_vp_ (5-88)

(5-89)

(5-9o)

On the graphs the quantity

(5-91)

r_oresents the mobility and the quantities nR and nI are re-

presented by their absolute values. In all calculations
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I the parameter

I T -__ _21_
I

.I

I

I

I
I
I

I
I

I

I

I
I

I

I

(5-92)

which is realted to the assu_otion of semi-con_ressibility

is less than 2.O.
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Before turning to a discussion of the graphical results of

the preceeding chapter, it may be well to summarize briefly

some of the results obtained earlier.

In accordance with condition (3-12), a parameter T was

defined in section 4o2.1 which describes limits for which a

real plasma may be considered semi-con1_ressible. In order to

use the results of this work in any real situation, the quan-

tity T mast be kept lower than a certain maximum value.

Another parameter introduced in section 4.2° i which has

been frequently used is the characteristic turbulent frequency

._. 0 The quantity-_h was shown to be related to a charac-

teristic interaction length for correlation between the modes

of turbulence.

The character of the modes present in turbulence is in-

dicated by inspecting the general dispersion equations of the

type (4-25) which show that in general six modes of wave motion

are to be expected. Three of these modes turn out to be modi-

fied classical modes as obtained for a non-turbulent Lorentz

gas° The other three modes are mixed and express the coupling

introduced by the non-linear terms in the equation of motion;

these modes are designated by the term "turbulent modes". In

I
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the degenerate cases of propagation along and perpendicular

to the average magnetic field the nature of these six modes

is as outlined in figures 4.1 and 4°2.

Tu_ now to the graphical results, figure 5.1 indi-

cates the behavior of the index of refraction for plasma

oscillations in the presence of turbulence. In a non-

turbulent Lorentz gas these oscillations do not propagate

when the pressure is neglected. In the presence of turbu-

lence propagation takes place although the damping is very

strong, the extinction index being equal to the index of

refraction. As the turbulence is increased, the phase velocity

@;iven by

_r_ -- _ _ (6-1)

inoreEhges,

Figures 5.2)3,4 indicate the behavior of the co_)lex index

of refraction for the ordinary modes. To the left of the

singular point near the plasma frequency these waves are

s%_ly damped as is indicated by the fact that the magnitude

of the index of refraction (nR) is much less than the magni-

tude of the extinction index (nI) . To the right of the critic-

al point propagation takes place with scme dancing which in-

creases with increase in turbulence. As the turbulence is

m
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increased it is also noticed that the critical point is dis-

placed to the left as is to be expected from the presence of

a viscosity-like term.

Figure 5.5 portrays the behavior of the index of re-

fraotion of turbulent modes (II) with varying magnetic field

strengths. It is to be noted that for this type of turbu-

lent mode, as with all of the others, the index of refraction

is approximately equal in magnitude to the index of extinction

so that the turbulent modes are all strongly damped.

Figure 5.6 shows the behavior of the index of refraction

for all three mode types found for propagation perpendicular to

the average magnetic field. The mode designated as "root 2" is

identified as the elliptically polarized mode since the index

of extinction is much less than the index of refraction indi-

cating propagation with slight damping. The other two modes are

turbulent or mixed since the damping is severe. One noteworthy

feature of the curves as shown is the similarity between results

for "root 2" and for "root 3" indicating that these two mode

types may be related. The same similarity is to be found be-

tween the curve for "root i" and the behavior of the index of

refraction in figure 5.5 for turbulent mode (II)° The in-

ference to be drawn from these similarities is that the turbu-

lent modes do indeed represent a mixing of the three possible

types of modes found in a non-turbulent Lorentz gas. Another

I
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wa_ of stating this is that excitation of one particular mode

will result in the excitaticn of others including those with

propagation vectors in other directions° The impossibility of

a one-dimensional turbulence is rather clear in view of these

observations.

The results shown in figure 5.7 are most significant in

that in the presence of moderate turbulence (R = l°0) there

is clearly a critical magnetic field above which the magnetic

field dependence of the mobility is of an entirely different

character. For sufficiently high magnetic fields and for

R - 1.0 the mobility shown is proportional to B0"5 in contrast

to the B2 dependence of the non-turbulent case. This type of

behavior has indeed been observed in the D.C. mobility 17 so

that the results presented here are highly suggestive.

Figure 5.8 indicates that the cross-diffusion, Mxy is but

little affected by the presence of turbulence.

Figure 5.9 is a study of the behavior of the mobility for

turbulent modes (II) associated with propagation along the mag-

netic field. The curves are Ir,coR01ete due to the fact that the

parameter T was to be less than 2.0.

Figures 5.10,11,12 show the behavior of Mxx , Mxy , and Myy

for the elliptically polarized modes propagating in the x-

direction. Of particular interest is the fact that M and
YY

Mxx behave quite differently with increase in turbulence above

I
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a critical magnetic field.

The graphical results are concluded with figures 5.13 and

5.14 which indicate the behavior of the mobility of the two

turbulent modes (IV,V) associated with a propagation vector

in the x-dlrectlon.

To conclude it may be well to discuss possible ways of

relating the results of the present study to experimentally

verifiable quantitles.

At several places in the preceeding pages, expressions

and values are obtained for the indices of refraction and

extinction. It may be possible to excite a particular mode

above its normal level in an already turbulent plasma, and

by means of measuring the dec_v of the mode at that frequency

a check could be made on the values predicted. The modes

present in the turbulence could be inferred from a study of

the behavior of the index of refraction, the dynamic viscosity

being an experin_ntal parameter°

In certain special cases it may be possible to determine

the relations governing velocity correlations and electric

field correlations or correlations of other types. Indications

of how this nm_ be done are discussed in the introduction of

chapter four.

It is also possible to study the phenemenon of diffusion

by defining a diffusion coefficient such that

I
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(6-2)

dlffusi_ is being c_sidered, and neglecting

Now from (3-85) leaving out the electric field term since

there results

A,<O-

(6-3)

Since the dispersion relatic_s are identical for the cal-

culation of the diffusion and the mobility, the only change in

the analysis is that where _ _g occurs for the mobility,

the term --_& appears so that the diffusion coef-

ficient is glven by

Note that vi here is that pa_c of the contribution to the velo-

city due to the turbulent density gradient, and is in general

much smaller than the vi contribution of the turbulent electric
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field.

If Dij is independent of k then the average velocity

correlation due to the average A.C. density gradient may be

found in a mariner similar to that used in developing equation

(4-_5).
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APPENDIX A

SPECIAL SYMBOLS

For a semi-compressible plasma = i otherwise less than i.

For a semi-compressible plasma = 0 otherwise greater
then O.

% -

H

k
m

2

Cc_lex wave vector.

Wave vector; real part of _.

hl Attenuation vector - imaginary part of _.

= _...j ,ljl.
P

I
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n
c

n I

R

S

SN
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Complex index of refraction.

Index of Refracticn; real part of nc.

Extinction Index; imaginary part of nc.

= <_pl_•

- %/_.

Indicates sign used in quadratic formula; may be +i

or -i. SN = +i indicates a turbulent mode; SN = -i

indicates a classical mode.

T • _" n .

T1,2,3, 4 (_,_) see section 3.2.

v@ Phase velocity • m/kR .

zC_ - -k',,.,- _').

is
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= _.

_2

• I-_ _.

1

n2 - 1

= - I_ + k2a.

-:-. (i + s)•
C 2

• D(_',=!)

= o(k - k' _'

Dynamic viscosity•

Dynamic viscosity (Helsenberg).

• e2__q_P

1112¢
o

• C2/0•

!
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APPENDIX B

FGJRIER TRANSFORM OF A PRODUCT

Let A(r_)

such that

and B(r) be two space dependent quantities

A (,c_)=JA(__')_ 4_'_aA_' (B-l)

and

(B-2)

It is desired to find an expression for the quantity AB(k)

where

A(_)_cc)- S A_(__)_ _.. (B-3)

Now from the Fourier integral theorem

(B-4)

and substituting for A(_r) according to (B-l), there results

I
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Now the Fourier transform of (B-2) is

so that integrating (5-5) over r first, it follows that

which is the ccnvolution theorem.

The above demonstration still holds if k is ccr_plex in

which case the imaginary part of k strictly belcr_s to the

I

amplitude so that

;

A(T) - SA(_-')=-

I where

I
I

Note that this extra amplitude factor cancels in the proof.

I

(5-5)

(B-6)

(5-7)

(5-8)

(5-9)

I
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APPENDIX C

TRANSPORT IN THE ABSENCE OF TURBULENCE

C. 1 Mobilities
I i

In the absence of turbulence, the mobility does not de-

pend on the refractive index nor on the type of mode involved

and is given by 24

0

0

s

L

-/ (C-l)

where collisions are neglected and

O_ : _--uu _. (c-2)

In terms of the general parameters of chapter five

equatlc_ (C-l) beet,ram

i
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| ! 'C 5
imI W w

I
D.z" YD&

0 \

0

Y (c-3)

I where

I
(c-4)

I
I

I
I

c.2 _n_ti_ I=_,,

C.2.1 Propagatlon along E

For a wave in a ncn-turbulmlt Lorentz gas propagating along

the average magnetic field, the index of refraction is deter-

mined from the dlsperslcn relations which follow from

(4-37,38,39) r_glectir_ turbulent ter_s so that

I __,__ __z (c-5)

I

I
(C-6)

I

I
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i

i

and

I

(c-7)

!
Frcm (C-7) it is seen that

!

!

!

and

tic 2" _)

(c-8)

(c-9)

!

!

which is the result for the usual non-propagating electron

plasm oscillations in the absence of the pressure term.

The other two dispersion relations yield

I

I
I

(C-lO)

where S m_v be positive or negative corresponding to ordinary

and extraordinary waves.

!

i
C.2.2 Propagation Perpendicular to

In this case the dispersion equations are

!

!

!
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I
mld

I

i " ('_ -_ : O_

I leading to

I _2_ t- _
for the singular longitudinal waves and to

I

I
I

I

I
I

I

I

I

for the elllptlcally polarized transverse waves.

(C-ll)

(C.-12)

(o-13)

(C-14)

(C-15)
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APPENDIX D

TWO DIMENSIONAL TURBUI._CE

A considerable simplification takes place when restriction

is made to two dlmensicnal turbulence. Assumlng that vz - 0 and

using the momentum equation (3-85) there result

-ag

I

, FI_ _'

' #C

Y

I

I

(D-l)

(D-2)

(D-3)

I
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If the z-cc_ponent of the electric field,

_ -_-_ (D-4)

is examined in the light of (D-3) it is seen that there are

tWO oases,

If kz _ 0,

#

(9-5)

which since vz 1 0 implies that

(_c , _-z-¢o.')'_ 0 ) (D-6)

The other alternative is that kz = 0 in which case (D-6)

I
does not hold, The latter case will be considered first°

D. 1 P,r_oagatlon perpendicular to

Since k is in the xy-plane

I "
(D-7)

I
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and the momentum equations are

and

!

I
from which the mobilltles may be obtained.

Using (3-39), the dispersion equations are

I

I

I

I

I

(D-8)

(D-9)

(D-IO)
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I

I
(D-n)

I and

I

I numerlcally.

which- leads to a quartic equation in n2c which may be solved

I

I

I

D.Z pINpagation Parallel to
I i , I , i

If the propagation vector hss a z-caT_cnent, it must have

components in no other direction so that vz = O. These waves

I

I
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are identical to those studied in section 4.2.2.

By using the relations obtained above, the transport

properties of two-dimensional turbulence may be studied in

detail since the important quantities may be obtained

numerically for propagation vectors of arbitrary direction.
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